Part Number Hot Search : 
AZ1084S KE82A KE82A AZY11 SI9978 D8066D MB91F475 SKIIP2
Product Description
Full Text Search
 

To Download MC10EP11 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MC10EP11, MC100EP11 3.3V / 5V ECL 1:2 Differential Fanout Buffer
The MC10/100EP11 is a differential 1:2 fanout buffer. The device is pin and functionally equivalent to the LVEL11 device. With AC performance much faster than the LVEL11 device, the EP11 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation.
http://onsemi.com
* 220 ps Typical Propagation Delay * Maximum Clock Frequency > 3 GHz Typical * PECL Mode Operating Range: VCC = 3.0 V to 5.5 V *
with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State
MARKING DIAGRAMS*
8 8 1 SO-8 D SUFFIX CASE 751 HEP11 ALYW 1 1 8 KEP11 ALYW
* * Safety Clamp on Inputs * Q Outputs Will Default LOW with Inputs Open or at VEE
8 8 1 TSSOP-8 DT SUFFIX CASE 948R HP11 ALYW 1
8 KP11 ALYW 1
H = MC10 K = MC100 A = Assembly Location
L = Wafer Lot Y = Year W = Work Week
*For additional information, see Application Note AND8002/D
ORDERING INFORMATION
Device MC10EP11D MC10EP11DR2 MC100EP11D MC100EP11DR2 MC10EP11DT MC10EP11DTR2 MC100EP11DT MC100EP11DTR2 Package SO-8 SO-8 SO-8 SO-8 TSSOP-8 TSSOP-8 TSSOP-8 TSSOP-8 Shipping 98 Units/Rail 2500 Tape & Reel 98 Units/Rail 2500 Tape & Reel 100 Units/Rail 2500 Tape & Reel 100 Units/Rail 2500 Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
(c) Semiconductor Components Industries, LLC, 2003
1
November, 2003 - Rev. 6
Publication Order Number: MC10EP11/D
MC10EP11, MC100EP11
Q0
1
8
VCC PIN D*, D**
PIN DESCRIPTION
FUNCTION ECL Data Inputs ECL Data Outputs Positive Supply Negative Supply
Q0
2 R1
7
D
Q0, Q0, Q1, Q1 VCC VEE
Q1
3
R2 R1
6
D
* Pins will default LOW when left open. ** Pins will default to high when left open.
Q1
4
5
VEE
Figure 1. 8-Lead Pinout (Top View) and Logic Diagram ATTRIBUTES
Characteristics Internal Input Pulldown Resistor Internal Input Pullup Resistor ESD Protection R1 R2 Human Body Model Machine Model Charged Device Model Value 75 kW 37.5 kW > 4 kV > 200 V > 2 kV Level 1 UL 94 V-0 @ 0.125 in 73
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Transistor Count Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. Oxygen Index: 28 to 34
MAXIMUM RATINGS (Note 2)
Symbol VCC VEE VI Iout TA Tstg qJA qJC qJA qJC Tsol Parameter PECL Mode Power Supply NECL Mode Power Supply PECL Mode Input Voltage NECL Mode Input Voltage Output Current Operating Temperature Range Storage Temperature Range Thermal Resistance (Junction-to-Ambient) Thermal Resistance (Junction-to-Case) Thermal Resistance (Junction-to-Ambient) Thermal Resistance (Junction-to-Case) Wave Solder 0 LFPM 500 LFPM std bd 0 LFPM 500 LFPM std bd < 2 to 3 sec @ 248C 8 SOIC 8 SOIC 8 SOIC 8 TSSOP 8 TSSOP 8 TSSOP Condition 1 VEE = 0 V VCC = 0 V VEE = 0 V VCC = 0 V Continuous Surge VI v VCC VI w VEE Condition 2 Rating 6 -6 6 -6 50 100 -40 to +85 -65 to +150 190 130 41 to 44 185 140 41 to 44 265 Unit V V V V mA mA C C C/W C/W C/W C/W C/W C/W C
2. Maximum Ratings are those values beyond which device damage may occur.
http://onsemi.com
2
MC10EP11, MC100EP11
10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3)
-40C Symbol IEE VOH VOL VIH VIL VIHCMR IIH IIL NOTE: Characteristic Negative Power Supply Current Output HIGH Voltage (Note 4) Output LOW Voltage (Note 4) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5) Input HIGH Current Input LOW Current D D 0.5 -150 Min 20 2165 1365 2090 1365 2.0 Typ 29 2290 1490 Max 37 2415 1615 2415 1690 3.3 150 0.5 -150 Min 20 2230 1430 2155 1430 2.0 25C Typ 30 2355 1555 Max 39 2480 1680 2480 1755 3.3 150 0.5 -150 Min 22 2290 1490 2215 1490 2.0 85C Typ 31 2415 1615 Max 40 2540 1740 2540 1815 3.3 150 Unit mA mV mV mV mV V mA mA
EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 4. All loading with 50 W to VCC - 2.0 V. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6)
-40C Symbol IEE VOH VOL VIH VIL VIHCMR IIH IIL NOTE: Characteristic Negative Power Supply Current Output HIGH Voltage (Note 7) Output LOW Voltage (Note 7) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 8) Input HIGH Current Input LOW Current D D 0.5 -150 Min 20 3865 3065 3790 3065 2.0 Typ 29 3990 3190 Max 37 4115 3315 4115 3390 5.0 150 0.5 -150 Min 20 3930 3130 3855 3130 2.0 25C Typ 30 4055 3255 Max 39 4180 3380 4180 3455 5.0 150 0.5 -150 Min 22 3990 3190 3915 3190 2.0 85C Typ 31 4115 3315 Max 40 4240 3440 4240 3515 5.0 150 Unit mA mV mV mV mV V mA mA
EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 W to VCC - 2.0 V. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 9)
-40C Symbol IEE VOH VOL VIH VIL VIHCMR Characteristic Negative Power Supply Current Output HIGH Voltage (Note 10) Output LOW Voltage (Note 10) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 11) Input HIGH Current Input LOW Current D D 0.5 -150 Min 20 -1135 -1935 -1210 -1935 VEE+2.0 Typ 29 -1010 -1810 Max 37 -885 -1685 -885 -1610 0.0 Min 20 -1070 -1870 -1145 -1870 VEE+2.0 25C Typ 30 -945 -1745 Max 39 -820 -1620 -820 -1545 0.0 Min 22 -1010 -1810 -1085 -1810 VEE+2.0 85C Typ 31 -885 -1685 Max 40 -760 -1560 -760 -1485 0.0 Unit mA mV mV mV mV V
IIH IIL NOTE:
150 0.5 -150
150 0.5 -150
150
mA mA
EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 W to VCC - 2.0 V. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
http://onsemi.com
3
MC10EP11, MC100EP11
100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12)
-40C Symbol IEE VOH VOL VIH VIL VIHCMR IIH IIL NOTE: Characteristic Negative Power Supply Current Output HIGH Voltage (Note 13) Output LOW Voltage (Note 13) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 14) Input HIGH Current Input LOW Current D D 0.5 -150 Min 26 2155 1355 2075 1355 2.0 Typ 35 2280 1480 Max 44 2405 1605 2420 1675 3.3 150 0.5 -150 Min 26 2155 1355 2075 1355 2.0 25C Typ 35 2280 1480 Max 44 2405 1605 2420 1675 3.3 150 0.5 -150 Min 26 2155 1355 2075 1355 2.0 85C Typ 35 2280 1480 Max 46 2405 1605 2420 1675 3.3 150 Unit mA mV mV mV mV V mA mA
EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 13. All loading with 50 W to VCC - 2.0 V. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15)
-40C Symbol IEE VOH VOL VIH VIL VIHCMR IIH IIL NOTE: Characteristic Negative Power Supply Current Output HIGH Voltage (Note 16) Output LOW Voltage (Note 16) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 17) Input HIGH Current Input LOW Current D D 0.5 -150 Min 26 3855 3055 3775 3055 2.0 Typ 35 3980 3180 Max 44 4105 3305 4120 3375 5.0 150 0.5 -150 Min 26 3855 3055 3775 3055 2.0 25C Typ 35 3980 3180 Max 44 4105 3305 4120 3375 5.0 150 0.5 -150 Min 26 3855 3055 3775 3055 2.0 85C Typ 35 3980 3180 Max 46 4105 3305 4120 3375 5.0 150 Unit mA mV mV mV mV V mA mA
EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 16. All loading with 50 W to VCC - 2.0 V. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 18)
-40C Symbol IEE VOH VOL VIH VIL VIHCMR Characteristic Negative Power Supply Current Output HIGH Voltage (Note 19) Output LOW Voltage (Note 19) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 19) Input HIGH Current Input LOW Current D D 0.5 -150 Min 26 -1145 -1945 -1225 -1945 VEE+2.0 Typ 35 -1020 -1820 Max 44 -895 -1695 -880 -1625 0.0 Min 26 -1145 -1945 -1225 -1945 VEE+2.0 25C Typ 35 -1020 -1820 Max 44 -895 -1695 -880 -1625 0.0 Min 26 -1145 -1945 -1225 -1945 VEE+2.0 85C Typ 35 -1020 -1820 Max 46 -895 -1695 -880 -1625 0.0 Unit mA mV mV mV mV V
IIH IIL NOTE:
150 0.5 -150
150 0.5 -150
150
mA mA
EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 W to VCC - 2.0 V. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
http://onsemi.com
4
MC10EP11, MC100EP11
AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21)
-40C Symbol fmax tPLH, tPHL tSKEW tJITTER VINPP tr tf Characteristic Maximum Frequency (See Figure 2) Propagation Delay to Output Differential CLK to Q, Q 140 Min Typ >3 Max Min 25C Typ >3 Max Min 85C Typ >3 Max Unit GHz ps 200 10 0.2 150 Q, Q 70 800 120 250 15 110 <1 1200 170 150 80 160 220 15 0.2 800 130 270 20 110 <1 1200 180 150 90 180 240 20 0.2 800 150 300 25 120 <1 1200 200 ps ps mV ps
Within Device Skew Q0, Q1 (Note 22) Device-to-Device Skew Random Clock Jitter (RMS) (See Figure 2) Input Voltage Swing Sensitivity (Differential Configuration) Output Rise/Fall Times (20% - 80%) @ 1.0 GHz
21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC - 2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.
900 OUTPUT VOLTAGE AMPLITUDE (mV) 800 700 600 500 400 300 200 100 0
9 8 7 6 5 4 3 2 1 JITTEROUT ps (RMS)
Figure 2. Output Voltage Amplitude (VOUTPP) RMS Jitter vs. Input Clock Frequency at Ambient Temperature
EEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE EE
0 1000 2000 3000 INPUT FREQUENCY (MHz)
http://onsemi.com
5
MC10EP11, MC100EP11
D VINPP = VIH(CLK) - VIL(CLK) D Q VOUTPP = VOH(Q) - VOL(Q) Q tPLH tPHL
Figure 3. AC Reference Measurement
Q Driver Device Q
Z0 = 50 W
D Receiver Device
Z0 = 50 W 50 W 50 W
D
V TT V TT = V CC - 2.0 V
Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.)
Resource Reference of Application Notes
AN1404 AN1405 AN1406 AN1504 AN1568 AN1650 AN1672 AND8001 AND8002 AND8009 AND8020 - - - - - - - - - - - ECLinPS Circuit Performance at Non-Standard VIH Levels ECL Clock Distribution Techniques Designing with PECL (ECL at +5.0 V) Metastability and the ECLinPS Family Interfacing Between LVDS and ECL Using Wire-OR Ties in ECLinPS Designs The ECL Translator Guide Odd Number Counters Design Marking and Date Codes ECLinPS Plus Spice I/O Model Kit Termination of ECL Logic Devices
For an updated list of Application Notes, please see our website at http://onsemi.com.
http://onsemi.com
6
MC10EP11, MC100EP11
PACKAGE DIMENSIONS
SO-8 D SUFFIX PLASTIC SOIC PACKAGE CASE 751-07 ISSUE AA
-X- A
8 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0_ 8_ 0.010 0.020 0.228 0.244
B
1 4
S
0.25 (0.010)
M
Y
M
-Y- G C -Z- H D 0.25 (0.010)
M SEATING PLANE
K
N
X 45 _
0.10 (0.004)
M
J
ZY
S
X
S
DIM A B C D G H J K M N S
TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A
8x
K REF 0.10 (0.004)
M
0.15 (0.006) T U
S 2X
TU
S
V
S
L/2
8
5
L
1 PIN 1 IDENT 4
B -U-
0.25 (0.010) M
0.15 (0.006) T U
S
A -V-
F DETAIL E
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0_ 6_ INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0_ 6_
C 0.10 (0.004) -T- SEATING
PLANE
D
-W- G DETAIL E
DIM A B C D F G K L M
http://onsemi.com
7
MC10EP11, MC100EP11
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.
http://onsemi.com
8
MC10EP11/D


▲Up To Search▲   

 
Price & Availability of MC10EP11

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X